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The closed equations of isotropic turbulence, obtained by the method of non- 
equilibrium statistical mechanics and a perturbation-variation approach (Qian 1983, 
1985,1988), are applied to the study of the spectrum dynamics of a turbulent passive 
scalar in the viscous-convective range. Batchelor’s k-l spectrum is further confirmed. 
Moreover the effective average value of the least principal rate of strain y in 
Batchelor’s spectrum function is theoretically evaluated and it is found that y-l = 
C(v/s): with C = 2 d 5 .  Here v is the kinematic viscosity, and 8 is the energy 
dissipation rate. This prediction is in agreement with experimental data reported by 
Grant et al. (1968) and Williams & Paulson (1977). 

1. Introduction 
We study a passive scalar field convected by an isotropic turbulence with very high 

Prandtl number, so the Corrsin wavenumber k, = (4p3)f  is much greater than the 
Kolmogorov wavenumber k, = (e/v3):;  here e is the energy dissipation rate, ,LL is the 
diffusion coefficient and v is the kinematic viscosity. In this case there exists a 
wavenumber range : Ed 4 E 4 k,, which is called the viscous-convective range. In the 
viscous-convective range the viscosity plays a dominant role but the diffusion can be 
neglected. Batchelor (1959) has predicted that the scalar-variance spectrum in the 
viscous-convective range is 

F ( k )  = x ( y k ) - l .  (1) 

Here 
W 

x = 2 p S  k2F(k)  dk 
0 

is the dissipation rate of scalar variance, y is the effective average least principal rate 

(3) 
of strain and 

where C is an universal constant. 
Much interest and effort have been directed to the determination of the universal 

constant C in (3). According to experimental data of the velocity derivative, 
Batchelor (1959) concluded that C = 2. Reid (1955) has suggested that C = 2.5. 
Gibson (1968) noted that 1 / 3  < C < 2 4 3 .  Kraichnan (1968) pointed out that 
Batchelor’s theory ignored the statistical character of the least principal rate of 
strain and the actual value of C could be much greater than the values suggested by 
Batchelor, Reid, and Gibson. Grant et al. (1968) have conducted experiments in the 
ocean to measure temperature and velocity fluctuation and found that C = 3.9 1.5. 
Kraichnan’s abridged Lagrangian-history direct interaction (ALHDI) approxi- 
mation has been applied to calculate C and gives C < 0.9, which is a poor prediction 

7-1 = C(v/s)f, 
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(see Leslie 1973). Williams & Paulson (1977) have made measurements of the 
temperature and velocity spectrum in the atmospheric boundary layer, and their 
data are in good agreement with the experimental data reported by Grant et al. 
(1968). By the test field model (TFM) Newman & Herring (1979) obtained C = 1.68 
and 0.68, corresponding to two different choices of the adjustable empirical constants 
of the TPM ; they think that C = 1.68 is near to experimental data and C = 0.68 close 
to Kraichnan’s ALHDI estimate. Hence it is desirable and attractive to have a 
theoretical prediction of the universal constant C which agrees with experimental 
data reported by Grant et al. (1968) and is free of adjustable empirical constants. 

In  this paper the non-equilibrium-statistical-mechanics theory of isotropic 
turbulencc (Qian 1983, 1985, 1988) is applied to derive Batchelor’s IC-’ spectrum, ( l ) ,  
(3), and in particular to evaluate the universal constant C in Batchelor’s spectrum 
function. Thc prediction C = 22/5  obtained in this paper is in agreement with 
experimental data. Then some relevant problems are discussed. 

2. Non-equilibrium statistical mechanics theory of turbulence 
The method of non-equilibrium statistical mechanics combined with a per- 

turbation-variation approach has been applied to solve the closure problem of 
turbulence theory and to calculate the velocity spectrum (Qian 1983, 1984). A brief 
description of this closure method is as follows. A complete set of independent real 
modal parameters, which are linear combinations of Fourier components of the 
velocity field, and its dynamic equations are worked out to describe the modal 
dynamics of a turbulent velocity field. According to non-equilibrium statistical 
mechanics, the probability density function of the turbulent velocity field satisfies 
the Liouville equation corresponding to the dynamic equation. A perturbation 
solution of the Liouville equation is obtained by using the Fokker-Planck (FP) 
operator to approximate the Liouville operator in the Liouville equation; the FP 
operator contains a dynamic damping coefficient. By using the Perturbation solution 
and the dynamic equation, the energy equation is derived, which is similar to that 
of Kraichnan’s direct-interaction approximation (DIA). The dynamic damping 
coefficient in the FP operator is treated as an optimum control parameter to 
minimize the error of the perturbation solution of the Liouville equation. By a 
variational approach, a convergent integral equation for the dynamic damping 
coefficient is obtained to replace the divergent response equation of Kraichnan’s 
DIA, thereby solving the closure problem without appealing to a Lagrangian 
formulation. The resulting closed set of integral equations has been solved by the 
equation-error method to obtain the following velocity spectrum in the universal 
equilibrium range (inertial range and viscous range) (Qian 1984, 1987) : 

Generally speaking turbulent scalar and velocity fields are intcrrclated and 
interact with each other. If thc scalar is passive, i.e. its amplitude is small enough not 
to effect the velocity field, the velocity field can be considered to be independent of 
the passive scalar. Of course the action of the turbulent velocity field on the scalar 
field still plays a dominant role, in particular the equations of the scalar-variance 
spectrum will contain the velocity spectrum E ( k ) .  The non-equilibrium-statistical- 
mechanics closure method described above has been extended to the study of a 
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passive scalar field convected by turbulence (Qian 1985). First, a complete set of 
independent real modal parameters and their dynamic equations are formulated to 
describe the turbulent passive scalar field, and the corresponding Liouville equation 
is derived for the conditional probability density function of the turbulent scalar 
field, the velocity field being given. Then a perturbation solution of the Liouville 
equation is obtained by using the FP operator to approximate the Liouville 
operator; the FP operator contains a effective damping coefficient SZ(k). By using 
this perturbation solution the higher-order correlations of the turbulent scalar- 
velocity field are expressed in terms of their lower-order correlations; then, from 
the dynamic equation we obtain the following variance equation (Qian 1985) : 

(d t+2pk2)F(k)  = S ( k ) ,  (5a)  

where 

is the scalar-variance transfer spectrum function, g ( k )  = F(k)/(4nk2) and 

C ( k , p )  = ( 4 n ) - l I d $ ~ i n ~ $ E ( r ) r - ~ ,  0 r = Ik-pl. (6) 

Here $ is the angle made by the wavevectors k and p .  The variance equation (5) 
implies the conservation of scalar variance. The effective damping coefficient Q ( k )  is 
treated as an optimum control parameter to minimize the error of the perturbation 
solution of the Liouville equation. Finally, by a variation procedure we obtain the 
following integral equation for the effective damping coefficient Q ( k )  (Qian 1985) ; 

The variance equation (5), (6) and the SZ equation (7) constitute the closed set of 
equations for the spectrum dynamics of a turbulent passive scalar field. 

Various closure methods yield nearly the same energy equation (or variance 
equation in the case of turbulent passive scalar), hence it has long been understood 
(Leslie 1973) that the crux of the matter is how to determine the damping coefficient 
or the relaxation time. The eddy-damped quasi-normal Markovian (EDQNM) 
approximation is a modification of the defective quasi-normal theory, but the 
modification is made a posteriori and lacks fundamental justification (Orszag 1974). 
The EDQNM approximation employs heuristic reasoning to determine the damping 
coefficient to  within several adjustable empirical constants, and then find these 
constants through a comparison of results to experimental data or a comparison of 
the phenomenological EDQNM approximation to a self-consistent analytical method 
free of arbitrariness. On the other hand the approach proposed by this author (Qian 
1983, 1985, 1988) is a self-consistent analytical method free of arbitrariness, which 
treats the damping coefficient as an optimum control parameter to minimize the 
error of the perturbation solution of the Liouville equation, leading to an integral 
equation for the damping coefficient which contains no empirical constants. Actually, 
according to modern control theory, the problem of determining the damping 
coefficient is just a optimum-parameter-estimation problem. Empirical constants of 
the EDQNM approximation could be determined by a comparison of the 
phenomenological EDQNM approximation to the self-consistent analytical method 
adopted in this paper. 
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3. The integral C ( k , p )  

Both the variance equation (5) and the S2-equation (7 )  contain the integral C ( k , p ) .  
which is a functional of the velocity spectrum E ( k )  and represents the action of the 
turbulent velocity field upon the passive scalar field. Letting Y = cosq5 and 
substituting (4a )  into (6), we have 

17 

dY( 1 - Y2) f ( z )  2 -7 ,  z = r / k d ,  

where r = (lc2+p2-2Ylcp)f.  Since -1 < Y < 1, we have 

A < x < B,  A = Jlc-pl/lcd, B = (k+p) / lc , .  ( 8 c )  

By using z as the dummy variable of integration, after some manipulation (86) 
becomes 

(W 
14 6 = 16 dz(2 - A 2 )  (B2 - z 2 )  (B2 -A2)-' f ( x )  2-7.  1: 

According to (46) f(x) is a monotonically decreasing function of x when x is not 
small, e.g. when x > 0.5, then from ( S b ,  c) we have 

0 < 6 < U ( A ) ,  (9a) 

U(A) = f ( A ) A - y  dY(1- Y 2 )  = + f ( A ) A - y .  ( 9 h )  I:, 
Here U ( A )  is the upper bound of 6 and approaches zero exponentially for large A ; 
for example, U ( A  = 5) = 2.55 x lo-'' and U ( A  = 10) = 2.61 x Hence when A is 
large, 6 is nearly zero or is simply equal to zero for a numerical computation on a 
computer. As will be explained later, this particular character of the integral C ( k ,  p )  
means that the contribution of the triad interaction ( k , p ,  r )  with A = Ik-p l /k ,  > 7 
to the spectrum dynamics in the viscous-convective range can be neglected and 7 is 
a numerical constant of order one. Suppose that 6 ( O )  is a good approximation of 6 
when A < 7 and is nearly zero when A > 7,  then 6(O) will be a good approximation 
of 6 for all values of A .  

The form of for the viscous-convective range can be obtained by the 
asymptotic method. The idealized model of the viscous-convective range corresponds 
to the limit case E l k ,  + co and Elk, + 0, and the ratio of the Corrsin wavenumber lc, 
to the Kolmogorov wavenumber /cd approaches infinity. I n  this idealized case we can 
make an asymptotic expansion of 6 for A < 7 as I? = k / k d +  00 which implies P = 
p / k d +  GO, and from ( 8 d )  wc obtain 

with 

Here x is the independent variable in the definition of a function, later it is also used 
as a dummy variable in an integral, but its meaning is clear from its context. When 
higher-order terms O(1?-2) in the above asymptotic expansion are ncglected. we have 
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The table of G(x)  value is given in the Appendix ; G ( x )  approaches zero exponentially 
when x is large, so (?(O) is nearly zero for large A.  Hence ( lOc)  represents a good 
approximation of (? in the sense explained above. It is easy to prove that G(x)  x 
(18/55)x-% as x+O, so G(x)+ 03 as x+O. From (8a)  and (lOc), finally we have 

C ( k , p )  = (4n)-1€~kcl%k-2p-2G(A), A = lk-pI/k,. (104  

4. Variance equation 
Substituting (10d)  into ( 5 b ) ,  we obtain 

When Ic is in the convective range of stationary turbulence, d , F ( k )  = 0, the variance 
equation (5a )  becomes 

S(r )  dr  = 2p 1; r2F(r) dr  = 2pIOm r2F(r)  dr = x, IkW 
which means that in the convective range the scalar-variance transfer function s: S(r)  dr is independent of k and is equal to the dissipation rate of scalar variance. 
Since the integrand in (1 1) changes sign when k a n d p  are interchanged, from (1 1) and 
(12) we obtain 

Suppose that g ( k )  and Q ( k )  have the form of a power function, 

g ( k )  = Mk", Q ( k )  = Nkn. (14) 

(15) 

Letting r = ku and p = kv, and substituting (14) into (13), we have 
= 4n6:k-i 6+m-n 

d (M/q w, 

By making change of dummy variables u = 1 +a and u = 1-b ,  (16a) becomes 

For the idealized model of the viscous-convective range corresponding to = 

k / k d  + 00 and k l k ,  + 0, we can make an asymptotic expansion of W aa E --f co . Since 
G(x)  decreases to zero exponentially when x is large, as shown in the Appendix, by 
neglecting higher-order terms in the asymptotic expansion and using the relationship 

IOm da 1; db G(E(a+ b ) )  (. . .) = Iom da Iom db G(E(a  + b ) )  (. . . ) (I? -f 00 ), 

from ( 1 6 b )  we obtain 

W = lom da loW db C@(a + b ) )  ( - im) (a  + 6 )  = ( -am) (I? + a), (16 c) 
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where /3 is a numerical constant, and by changing dummy variables 

p =  dX dB(Al+B)G(K+B), A"=I?a, B=j?b ,  Jo* JOrn 
which can be simplified and becomes 

p = J: dxx2G(x). 

x = 2n( - m) peg ki(M/N) k3+m--n, 

From (15 )  and 16c)  we obtain 

where k is a variable but all other quantities are constants; hence 

3 + m - n  = 0 (18 )  

and 

Here the relationship &k$ = s / v  has been used. 

5. O-Equation 
Substituting ( 1 0 d )  into the 0-equation ( 7 ) ,  we obtain 

Letting p = k ( l  +y), we have A = Ik-pl/kd = j?lyl, and it can be shown that the 
asymptotic approximation (10 c)  is obtained by neglecting higher-order terms O ( y 2 )  
as I? = k /k ,+  CO, while A = O ( l ) ,  corresponding to the idealized model of viscous- 
convective range. The omission of higher-order terms O ( y 2 )  implies that 

g(p)  = g ( 4  ( 1  + [kg'(k)lg(k)l  Yl, Q ( P )  = Q ( k )  { 1 + [%]Y}. ( 2 1 )  

From (14), (20) and ( 2 1 )  we have 

iPk2n-3 = d k i t / :  dy G(I?lyl) W(y), 

W(y) = - $ n y [ 1 + 2 y + O ( y 2 ) ] .  

Since 

by using ( 1 7 ) ,  equation ( 2 2 )  becomes 

pk2n-3  = - ' Jy  dy y2G(Ry)  = - k-8 d px-3, 

( 2 2 4  

n=O (23) 

and N2 = -rnpE/v. (24 )  

2 4  
or 

In  (22c )  k is a variable but all other quantities are constants, hence 

P k 2 "  = - mps3 kdz = - rnpe/v. 



The spectrum of a turbulent passive scalar 209 

6. Viscous-convective-range spectrum 

( 2 5 )  
From (18) and (23) we obtain 

From (19), (24), and ( 2 5 ) ,  we have 

m = -3. 

M = ( 2 ~ ~ - ~ ~ ( v / e ) i ( 3 p ) - 4 ,  

N = (3Pe/v)i .  

By using (14), (25), and (as), the scalar-variance spectrum is 

F ( k )  = 4nk2g(k) = X C ( V / € ) & ,  

C = 2(3P)-t. 

Equations (28) and (29) correspond to (1)  and (3). 
Using (4b), ( l o b ) ,  and (17), a numerical computation gives /3 = 0.0666; then from 

(29) we have C = 4.47. There arises the question of whether the values of ,8 and C 
depend upon the form of the function f ( x ) .  

Actually it can be shown that for this model the values of /3 and C are independent 
of the concrete forms of the approximate formula for f ( x ) .  From ( l o b )  and (17) we 
have 

(30) 
0 s: p = ~ d r r l ~ ~ d r ( x 2 - r z ) f ( x ) 2 s  14 = & dzx)f(x). 

From the definition of the energy dissipation rate, using (4a),  we have 

or 2 dxxif(x) = 1.  
J o  

P=' From (30) and (31) we have 

Substituting (32) into (29), we obtain 

15'  

C = 22/5 z 4.47. (33) 

From (14), (23), (27), and (32), we have 

Q ( k )  = N = (1/.\/5) (C/V)$. (34) 

7. Discussion 
In  previous work the method of non-equilibrium statistical mechanics combined with 
a perturbation-variation approach has been applied to  derive the velocity spectrum 
in the universal range and the scalar-variance spectrum in the inertial-convective 
range, and the universal constants predicted from these spectra functions agree with 
experimental data (Qian 1983, 1984, 1985). In this paper the same method is applied 
to the study of the spectrum dynamics of a turbulent passive scalar field in the 
viscous-convective range. Batchelor's k-' spectrum is derived, and the predicted 
universal constant C = 2 4 5  is in agreement with experimental data C = 3 . 9 2  1.5 
(Grant et al. 1968). 

The results of this paper further confirm the conclusion of Kraichnan's analysis 
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that  the actual value of the universal constant C would be greater than the values 
suggested by Batchelor (1959) and Gibson (1968) who have neglected the statistical 
character of the least principal rate of strain. The prediction C = 21/5 obtained in 
this paper is also much better than the prediction C < 0.9 of Kraichnan’s ALHDI 
approximation (Kraichnan 1968 ; Leslie 1973). By proper choice of the empirical 
constants, the TFM (Newman & Herring 1979) or the EDQNM approximation 
(Herring et al. 1982) might produce a result which is better than Kraichnan’s ALHDI 
estimate but still less than the experimental data of Grant et al. (1968). The 
prediction made in this paper, like the prediction by Kraichnan’s DIA (or LHDIA) 
theory, is a theoretical prediction from a self-consistent analytical method free of 
adjustable empirical constants, and is in agreement with experimental data. 

According to the spectrum-dynamical equations (5)-(7), the elementary process of 
the spectrum dynamics of a passive scalar field convected by turbulence is the triad 
interaction ( k , p , r ) .  Here wavenumbers k and p are connected with the scalar 
spectrum while the wavenumber r is connected with the velocity spectrum, and A < 
r / k d  < R. Since f(x) approaches zero exponentially, the major contribution to the 
spectrum dynamics is made by the wavenumber r x Ak,, the contribution of the 
wavenumber r 9 Ak, is minor. Let 

then ~ ( c o )  = 1 by (17). From the analysis developed in 9 § 3 4 ,  [(x) represents the 
percentage of the total contribution made by the triad interactions ( k ,  p ,  r )  with 
A = Ik-p l /k ,  < x. The table of [(x) values given in the Appendix shows that 99.9% 
of the total contribution is made by the triad interaction (k, p ,  r )  with A < 1. Hence 
the following statement, made in $3, is further justified : the contribution of the triad 
interaction ( k , p , r )  with A = Ik-pl/kd > y can be neglected and 9 is a numerical 
constant of order one. 

The values of G(x)  and [(x) in the Appendix are obtained by using (4b) .  A well- 
known semi-empirical formula for f ( x )  is (Pa0 1965) 

f(x) = Koexp ( -  l.TjKox%), KO = 1.7. (36) 

A calculation of G(x)  and [(x) was also made by using Pao’s formula (36), and the 
resulting G(x)  and [(x) have the same behaviour as in the Appendix, although the 
numerical values are not identical. This behaviour enables us to simplify the integral 
C ( k , p ) ,  the variance equation, and the SZ-equation by an asymptotic method. 

An interesting corollary of the behaviour of [(x) given in the Appendix is that the 
most important wavenumber interval of the velocity spectrum is the interval [O.lk,, 
k,] instead of the one which is far away from k,. Eddies with most of their energy in 
the interval [O.lk,,k,] are the eddies which make the major contribution to the 
spectrum dynamics in the viscous-convective range, and will be called ‘major 
eddies ’. These major eddies have a characteristic length 1 M v/kd and a characteristic 
time 7 M r ( v / e ) i  (7 is a numerical constant of order one). Hence these major eddies 
give rise to an effective damping coefficient D(k) M 7-l (e/v);/y, which is in 
agreement with (34). I n  the viscous-convective range, owing to f ( x )  decreasing 
exponentially, these major eddies are related to the wavenumbers of the velocity 
spectrum, which are independent of thc wavenumber k of the scalar spectrum, so 
SZ(k) x 7-l is a constant independent of k, as shown by (34). However, in the 
inertial-convective range the effective damping coefficient D(k) = 0 . 5 ~ ;  ki increases 
with k (Qian 1985), because in this case the eddies which make the major 
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contribution are related to the wavenumbers of the velocity spectrum which 
increases with the wavenumber k of the scalar spectrum, so their characteristic time 
decreases with k ,  and Q ( k )  z 7-l increases with lc. 

Strictly speaking, the derivation and results of this paper are valid only for the 
idealized model of the viscous-convective range corresponding to the limit case 
k l k ,  + co and k l k ,  + 0. In this idealized limit case the integral C ( k ,  p ) ,  the variance 
equation, and the SZ-equation can be simplified by an asymptotic expansion so that 
an analytical solution of the complicated integral equations (5) and (7)  is possible. 
The results of this paper are approximately valid for a real turbulent flow with large 
k ! l k d .  

This research was supported by the National Scicncc Foundation of China. 

Appendix. Table of G ( x )  and <(x) values 
X 

0.0001 
0.001 
0.01 
0.02 
0.04 
0.06 
0.08 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Q(x) 

0.1849 x lo7 
0.4295 x lo5 
0.1 157 x 104 

393.7 
127.5 
62.42 
36.04 
22.75 
4.063 
1.065 
0.3245 
0.1066 
0.03653 
0.01284 
0.004579 
0.001646 
0.5942 x 
0 .1816~  lo-' 
0.2670 x 
0.1770 x lo-'' 
0.5569 x 
0.8823 x 
0.7432 x 
0.3487 x 
0.9482 x 
0.1546 x 

f ( 4  
0.206 x 
0.468 x lo-' 
0.0121 
0.0328 
0.0880 
0.153 
0.220 
0.291 
0.589 
0.780 
0.888 
0.945 
0.974 
0.988 
0.995 
0.998 
0,999 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
I .ooo 
I .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
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